SR25-D2
Digital secondary standard pyranometer with sapphire outer dome

SR25-D2 takes solar radiation measurement to the next level. Using a sapphire outer dome, it has negligible zero offsets. SR25-D2 is heated in order to suppress dew and frost deposition, maintaining its high measurement accuracy. When heating SR25-D2, the data availability and accuracy are higher than when ventilating traditional pyranometers. It needs very low power. SR25-D2 offers two types of commonly used irradiance outputs in W/m²: digital via Modbus RTU over RS-485 and analogue 4-20 mA (current loop).

Introduction
SR25-D2 represents the next level in solar radiation measurement. Using a sapphire outer dome, it has negligible zero offsets. SR25-D2 is heated in order to suppress dew and frost deposition, maintaining its high measurement accuracy. When heating SR25-D2, the data availability and accuracy are higher than when ventilating traditional pyranometers. In addition, SR25-D2 needs very low power; heating only consumes 1.5 W compared to the usual 10 W for ventilation. The low thermal offsets make SR25-D2 very suitable for measuring diffuse radiation. Patents on the SR25-D2 working principle are pending.

SR25-D2 offers two types of commonly used outputs: digital via Modbus RTU over RS-485 and analogue 4-20 mA (current loop). These industry standards allow for easy data acquisition, easy read-out and error-free instrument exchange. The instrument is also available with analogue millivolt output (as SR25).
Best data availability
By keeping the SR25-D2 outer dome free of dew and frost with help of the internal heater, data availability is highly increased over traditional pyranometers, whether these are ventilated or not.

Best measurement accuracy
SR25-D2 measures the solar radiation received by a plane surface, in W/m², from a 180° field of view angle. SR25-D2 offers the best measurement accuracy: the specification limits of two major sources of measurement uncertainty have been greatly improved over competing pyranometers: "zero offset a" and temperature response.

SR25-D2 design
SR25-D2 has a sapphire outer dome, glass inner dome and an internal heater. It employs a state-of-the-art thermopile sensor with black coated surface and an anodised aluminium body. The connector, desiccant holder and sun screen fixation are very robust and designed for long term use.

Figure 3 state-of-the-art electronics inside the SR25-D2
SR25-D2 uses a high-end 24-bit A/D converter. All parts are specified for use across SR25-D2’s entire rated operating temperature range. SR25-D2 offers two types of outputs: digital output via Modbus RTU over 2-wire RS-485 and analogue 4-20 mA output (current loop).

Hukseflux Sensor Manager software
For communication between a PC and SR25-D2, the Hukseflux Sensor Manager software is included. It allows the user to plot and export data, and change the SR25-D2 Modbus address and its communication settings.

Figure 4 overview of SR25-D2:
(1) cable, (2) fixation of sun screen, (3) glass inner dome, (4) thermal sensor with black coating, (5) sapphire outer dome, (6) sun screen, (7) humidity indicator, (8) desiccant holder, (9) levelling feet, (10) bubble level, (11) connector

Uncertainty evaluation
The uncertainty of a measurement under outdoor conditions depends on many factors. Guidelines for uncertainty evaluation according to the "Guide to Expression of Uncertainty in Measurement" (GUM) can be found in our manuals. We provide spreadsheets to assist in the process of uncertainty evaluation of your measurement.

Standards
Applicable instrument classification standards are ISO 9060 and WMO-No. 8. Calibration is according to ISO 9847. PV related standards are ASTM E2848 and IEC 61724.

Choosing the right instrument
Pyranometers are subject to classification in three classes according to ISO 9060. From second class to first class and from first class to secondary standard, the achievable accuracy improves by a factor 2. Measurement accuracy does not only depend on instrument properties, but also on measurement conditions. A very accurate instrument will quickly underperform without a regular schedule of maintenance. Our pyranometer selection guide assists you in choosing the right instrument. Whatever your application is: Hukseflux offers the highest accuracy in every class at the most attractive price level.
Suggested use

- all situations where ventilated pyranometers are employed
- all networks with regular instrument exchange
- PV system performance monitoring
- indoor PV testing with solar simulators
- airborne measurements
- diffuse measurements
- environments with dew
- environments with frost

SR25-D2 features and benefits

- sapphire outer dome: negligible zero offsets
- internal heater: because of dew and frost suppression by heating, better data availability and accuracy than ventilated instruments
- 1.5 W: very low power consumption
- digital output: easy implementation & servicing
- test certificates for temperature response and directional response included: all sensors tested individually for ISO 9060 compliance

SR25-D2 specifications

<table>
<thead>
<tr>
<th>Measurand</th>
<th>hemispherical solar radiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO classification</td>
<td>secondary standard pyranometer</td>
</tr>
<tr>
<td>Zero offset a</td>
<td>1 W/m² ventilated</td>
</tr>
<tr>
<td>Calibration traceability</td>
<td>to WRR</td>
</tr>
<tr>
<td>Calibration registers</td>
<td>accessible to users</td>
</tr>
<tr>
<td>Spectral range</td>
<td>285 to 3000 x 10⁻³ m</td>
</tr>
<tr>
<td>Rated operating temperature</td>
<td>-40 to +80 °C range</td>
</tr>
<tr>
<td>Temperature response</td>
<td>± 0.4 % (-30 to +50 °C)</td>
</tr>
<tr>
<td>Temperature response test of individual instrument</td>
<td>report included</td>
</tr>
<tr>
<td>Directional response test of individual instrument</td>
<td>report included</td>
</tr>
<tr>
<td>Standard cable length</td>
<td>5 m</td>
</tr>
<tr>
<td>Backwards compatibility</td>
<td>SR25-D1</td>
</tr>
</tbody>
</table>

Digital output

<table>
<thead>
<tr>
<th>Output</th>
<th>irradiance in W/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument body</td>
<td>temperature in °C</td>
</tr>
<tr>
<td>Communication protocol</td>
<td>Modbus / over 2-wire RS-485</td>
</tr>
<tr>
<td>Transmission mode</td>
<td>RTU</td>
</tr>
<tr>
<td>Rated operating voltage range</td>
<td>5 to 30 VDC</td>
</tr>
<tr>
<td>Power consumption (sensor)</td>
<td>< 75 x 10⁻³ W at 12 VDC</td>
</tr>
<tr>
<td>Heater</td>
<td>1.5 W at 12 VDC</td>
</tr>
</tbody>
</table>

4-20 mA output

<table>
<thead>
<tr>
<th>Output</th>
<th>irradiance in W/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmitted range of 4-20 mA output</td>
<td>0 to 1600 W/m²</td>
</tr>
<tr>
<td>Rated operating voltage range of 4-20 mA output</td>
<td>5.5 to 40 VDC</td>
</tr>
<tr>
<td>Power consumption - main supply</td>
<td>< 75 x 10⁻³ W at 12 VDC</td>
</tr>
<tr>
<td>- 4-20 mA current loop</td>
<td>< 240 x 10⁻³ W at 12 VDC</td>
</tr>
<tr>
<td>Heater</td>
<td>1.5 W at 12 VDC</td>
</tr>
</tbody>
</table>

Options

- longer cable, in multiples of 5 metres

About Hukseflux

Hukseflux takes measurement to the next level. We design and supply sensors as well as test & measuring systems, and offer related services such as engineering and consultancy. Hukseflux sensors, systems and services are offered via our office in Delft, the Netherlands and local distributors worldwide.

Figure 5 SR25-D2’s sapphire outer dome takes solar radiation measurement to the next level

See also

- SR25 secondary standard pyranometer with sapphire outer dome and analogue millivolt output
- the making of SR25 documented
- SR20 secondary standard pyranometer with analogue output, SR20-D2 with digital output
- view our complete range of solar sensors
Nowadays, the best pyranometers are made by Hukseflux Thermal Sensors. This overview of features and benefits of SR25-D2 gives you some of the reasons why! Whatever your application is, Hukseflux offers the highest accuracy in every class at the most attractive price level.

Digital secondary standard pyranometer with sapphire outer dome

Best measurement accuracy
- lowest zero offsets
- lowest calibration uncertainty
- best temperature dependence

Best data availability
- sapphire dome combined with internal heating
- suppresses dew and frost deposition
- very low power consumption

Best connector
- interchangeable cables
- IP67 grade
- for industrial use

Best digital interface
- Modbus RTU over 2-wire RS-485
- high-end 24-bit A/D converter
- easy implementation & servicing

Best desiccant cartridge
- visible indicator of instrument health
- rugged aluminium design
- serviceable by user

Best data availability
- full directional response testing
- temperature response testing from -30 to 50 °C
- all ISO required reports included with every individual sensor

© Copyright by Hukseflux. Version 1603. Page 4/4. For Hukseflux Thermal Sensors go to www.hukseflux.com or e-mail us: info@hukseflux.com